Embeddings

Raw

matching
BM25
semantic meaning
cosine similarity
Vector Search
1️⃣ sparse =
[{331: 0.5}, {14136: 0.7}]
2️⃣ dense(BERT) =
[0.2, 0.3, 0.5, 0.7, ...]

Build

docker build . --platform linux/amd64 -t huggingface/tei

Mac Silicon, from local

# Setup cargo install --path router -F candle -F metal # Run model=intfloat/multilingual-e5-large revision=main volume=$PWD/data text-embeddings-router --model-id $model --revision $revision --port 8081 # Embed curl 127.0.0.1:8081/embed \ -X POST \ -d '{"inputs":"What is Deep Learning?"}' \ -H 'Content-Type: application/json' # Classifier model model=BAAI/bge-large-en-v1.5 revision=refs/pr/5 # Rerank curl 127.0.0.1:8081/rerank \ -X POST \ -d '{"query":"What is Deep Learning?", "texts": ["Deep Learning is not...", "Deep learning is..."]}' \ -H 'Content-Type: application/json' # Predict curl 127.0.0.1:8081/predict \ -X POST \ -d '{"inputs":"I like you."}' \ -H 'Content-Type: application/json'